1,830 research outputs found

    Extra-large crystal emulsion detectors for future large-scale experiments

    Full text link
    Photographic emulsion is a particle tracking device which features the best spatial resolution among particle detectors. For certain applications, for example muon radiography, large-scale detectors are required. Therefore, a huge surface has to be analyzed by means of automated optical microscopes. An improvement of the readout speed is then a crucial point to make these applications possible and the availability of a new type of photographic emulsions featuring crystals of larger size is a way to pursue this program. This would allow a lower magnification for the microscopes, a consequent larger field of view resulting in a faster data analysis. In this framework, we developed new kinds of emulsion detectors with a crystal size of 600-1000 nm, namely 3-5 times larger than conventional ones, allowing a 25 times faster data readout. The new photographic emulsions have shown a sufficient sensitivity and a good signal to noise ratio. The proposed development opens the way to future large-scale applications of the technology, e.g. 3D imaging of glacier bedrocks or future neutrino experiments.Comment: Version accepted for publication in JINS

    A new application of emulsions to measure the gravitational force on antihydrogen

    Full text link
    We propose to build and operate a detector based on the emulsion film technology for the measurement of the gravitational acceleration on antimatter, to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to test the weak equivalence principle with a precision of 1% on the gravitational acceleration g by measuring the vertical position of the anni- hilation vertex of antihydrogen atoms after their free fall in a horizontal vacuum pipe. With the emulsion technology developed at the University of Bern we propose to improve the performance of AEgIS by exploiting the superior position resolution of emulsion films over other particle de- tectors. The idea is to use a new type of emulsion films, especially developed for applications in vacuum, to yield a spatial resolution of the order of one micron in the measurement of the sag of the antihydrogen atoms in the gravitational field. This is an order of magnitude better than what was planned in the original AEgIS proposal.Comment: 17 pages, 14 figure

    Effect of laser surface modification (LSM) on laser energy absorption for laser brazing

    Get PDF
    Since the development of the laser in the 1960s a rapid development of research interests in science and technology took place. Since then, the need of laser application in industrials such as automotive, aerospace and electronics is increasing because of several advantages like automation worthiness, noncontact processing and product quality improvement. In this present study, the effect of Laser Surface Modification (LSM) on pure copper plate towards the laser energy absorption during indirect laser brazing process was studied. The laser brazing experiment was conducted inside a chamber under controlled vacuum pressure with 400Pa and irradiated with constant 140 Watt laser power. The defocusing features for laser brazing was used in order to find better focal position. Accordingly, the focal length for this laser brazing experiment was set to the focus point at 124 mm from the focal plane. Meanwhile, during LSM process, laser parameters such as laser scanning speed and focus length have been kept constant throughout the surface modification process. Yet, the laser power and laser frequency have been varied from 9 Watt to 27 Watt and 10 kHz to 80 kHz respectively. Apparently, surface roughness due to surface removal and oxide layer formation were presented during LSM process. These two surface integrities were found to be the factors of increasing laser energy absorption. It was discovered that an increase in surface roughness and oxide layer formation can absorb more laser energy which then results an increase in brazing temperature during laser brazing. This is because, increasing surface roughness will scatter the laser energy over a larger surface area, multiply the reflections in the surface irregularities while the oxide layer will enhance the interference phenomena of laser energy occurring inside the oxide layer. Both mechanisms increase laser energy absorptivity during laser brazing which results a high brazing temperature

    Immune cells and oxidative stress in the endotoxin tolerance mouse model

    Get PDF
    Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.FAPESPCNP

    Automatic track recognition for large-angle minimum ionizing particles in nuclear emulsions

    Full text link
    We previously developed an automatic track scanning system which enables the detection of large-angle nuclear fragments in the nuclear emulsion films of the OPERA experiment. As a next step, we have investigated this system's track recognition capability for large-angle minimum ionizing particles (1.0tanθ3.5)(1.0 \leq |tan \theta| \leq 3.5). This paper shows that, for such tracks, the system has a detection efficiency of 95%\% or higher and reports the achieved angular accuracy of the automatically recognized tracks. This technology is of general purpose and will likely contribute not only to various analyses in the OPERA experiment, but also to future experiments, e.g. on low-energy neutrino and hadron interactions, or to future research on cosmic rays using nuclear emulsions carried by balloons.Comment: 11 pages, 10 figures, accepted by JINS
    corecore